Search results for "Energy conversion"

showing 10 items of 134 documents

Application of the reduced I-V Blaesser’s characteristics in predicting PV modules and cells conversion efficiency in medium and high insolation cond…

2017

Abstract The article presents theoretical foundations of application of the reduced I-V Blaesser’s characteristics in predicting a photovoltaic cell/module (PV) efficiency, together with calculation procedures. A detailed analysis of the error of this transformation method of characteristics was carried out. Its practical application in predicting efficiency of operation of various PV cells and modules in medium and high insulation conditions was demonstrated. The practical suitability of the presented method in early detection of ageing phenomena, such as, for example, absorber degradation taking place in PV modules, was demonstrated. The article was prepared on the basis of the results of…

010302 applied physicsInsolationEnvironmental EngineeringChemistrybusiness.industryEcology (disciplines)Energy conversion efficiency02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesEnergy engineering0103 physical sciencesEnvironmental Chemistry0210 nano-technologyProcess engineeringbusinessEcological Chemistry and Engineering S
researchProduct

Tetrasubstituted Thieno[3,2- b]thiophenes as Hole-Transporting Materials for Perovskite Solar Cells

2019

Three hole-transporting materials (HTMs) were prepared following a straightforward synthetic route by cross-linking arylamine-based ligands with a simple thieno[3,2-b]thiophene (TbT) core. The novel HTMs were fully characterized with standard techniques to gain insight into their optical and electrochemical properties and were incorporated in solution-processed mesoporous (FAPbI3)0.85(MAPbBr3)0.15 perovskite-based solar cells. The similar molecular structure of the synthesized HTMs was leveraged to investigate the role that the bridging units between the conjugated TbT core and the peripheral arylamine units plays on their properties and thereby on the photovoltaic response. A remarkable po…

010405 organic chemistryChemistryOrganic ChemistryPhotovoltaic systemEnergy conversion efficiencyConjugated system010402 general chemistryElectrochemistry7. Clean energy01 natural sciencesCombinatorial chemistry0104 chemical scienceschemistry.chemical_compoundThiopheneMoleculeMesoporous material
researchProduct

Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic generation in a single KTP crystal cut as a sphere

1997

We determine within an accuracy of ∼10% the absolute magnitude of the quadratic effective coefficients of types I and II phase-matched second-harmonic generation from conversion efficiency measurements in a single nonlinear crystal cut as a sphere. The agreement is good with measurements performed in thin parallelepipedal samples. The material studied is KTiOPO4, for which improved Sellmeier equations are given.

Absolute magnitudePhysicsbusiness.industryMathematical analysisEnergy conversion efficiencyPhase (waves)Second-harmonic generationStatistical and Nonlinear PhysicsAtomic and Molecular Physics and OpticsCrystalNonlinear systemQuadratic equationOpticsbusinessRefractive indexJournal of the Optical Society of America B
researchProduct

Impact of hydroxy and octyloxy substituents of phenothiazine based dyes on the photovoltaic performance

2013

Two novel organic dyes containing hydroxy and octyloxy substituents onto a phenothiazine skeleton were synthesized and their effects on the photovoltaic performance were studied. Hydroxy acts as an ancillary anchoring unit along with the carboxylic group, while the phenothiazine modified moiety acts as an electron donor. The photophysical and electrochemical studies revealed that maximum absorbance of the dye with the hydroxy group in the solution was blue shifted and its band gap increased, indicating that donor acceptor strength was reduced as compared to the octyloxy substituted dye. Furthermore, electron lifetime of the organic dye with the hydroxy moiety was shorter due to smaller resi…

Absorbancechemistry.chemical_compoundDye-sensitized solar cellchemistryBand gapProcess Chemistry and TechnologyGeneral Chemical EngineeringPhenothiazineEnergy conversion efficiencyMoietyElectron donorPhotochemistryElectrochemistryDyes and Pigments
researchProduct

Synthesis and photovoltaic performance of dihydrodibenzoazepine-based sensitizers with additional lateral anchor

2013

Three novel metal-free organic dyes with dihydro-5H-dibenzo[b,f]azepine as a donor and cyanoacrylic acid as an anchoring unit were designed as an innovative linear skeleton of D-D-pi-A type of organic dyes. The conversion efficiency of the derived dye-sensitized solar cells is moderate. Among them, the dye with a hydroxy group as an additional anchoring moiety exhibited the highest UV-Vis absorption with a maximum molar extinction coefficient of 24,136 M-1 cm(-1) at lambda(max) = 458 nm and the best photovoltaic performance with an overall power conversion efficiency of 4.88%, while the dye with a carboxy group as an additional anchoring moiety exhibited the lowest conversion efficiency (4.…

Absorption (pharmacology)Materials scienceProcess Chemistry and TechnologyGeneral Chemical EngineeringPhotovoltaic systemEnergy conversion efficiencyAnchoringMolar absorptivityPhotochemistrychemistry.chemical_compoundDye-sensitized solar cellchemistryMoietyAzepineDyes and Pigments
researchProduct

Influence of the electro-optical properties of an a-Si:H single layer on the performances of a pin solar cell

2012

We analyze the results of an extensive characterization study involving electrical and optical measurements carried out on hydrogenated amorphous silicon (α-Si:H) thin film materials fabricated under a wide range of deposition conditions. By adjusting the synthesis parameters, we evidenced how conductivity, activation energy, electrical transport and optical absorption of an α-Si:H layer can be modified and optimized. We analyzed the activation energy and the pre-exponential factor of the dark conductivity by varying the dopant-to-silane gas flow ratio. Optical measurements allowed to extract the absorption spectra and the optical bandgap. Additionally, we report on the temperature dependen…

Amorphous siliconThin film materialThin film solar cell Activation energySingle junctionConductivitySettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materialaw.inventionchemistry.chemical_compoundElectric conductivitylawMaterials ChemistryThin filmAbsorption (electromagnetic radiation)Preexponential factorGas-flow ratioMetals and AlloysSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTemperature dependenceHydrogenated amorphous siliconOptoelectronicsElectric propertieQuantum efficiencyHydrogenationOptical data processingDeposition conditionSiliconMaterials scienceActivation energyQuantum efficiencySynthesis conditionVapor deposition SiliconOpticsSolar cellActivation energyDark conductivityCharacterization studieElectromagnetic wave absorptionThin filmDepositionElectrooptical propertieThin film solar cellConductivitybusiness.industryEnergy conversion efficiencySolar cellAmorphous siliconMeyer-Neldel ruleOptical propertieOptical measurementelectro-optical propertiesNanostructured materialSilicon; Solar cell; electro-optical propertiesElectrical transportchemistrySynthesis parameterOptical variables measurementSingle layerConversion efficiencybusinessOptical gap
researchProduct

Should TiO2 nanostructures doped with Li+ be used as photoanodes for photoelectrochemical water splitting applications?

2017

[EN] Different TiO2 nanostructures, nanotubes and nanosponges, were obtained by anodization of Ti under stagnant and hydrodynamic conditions. Samples were doped with Li+ before and after annealing at 450 degrees C during 1 h. The nanostructures were characterized by different microscopy techniques: Field Emission Scanning Electron Microscopy (FE-SEM) and Raman Confocal Laser Microscopy. Additionally, Incident Photon-to-electron Conversion Efficiency (IPCE), photoelectrochemical water splitting and stability measurements were also performed. According to the results, TiO2 nanostructures doped before annealing present the worst photocurrent response, even if compared with undoped samples. On …

Annealing (metallurgy)Nanotechnology02 engineering and technology010402 general chemistry01 natural sciencesCatalysisINGENIERIA QUIMICAAnnealingsymbols.namesakechemistry.chemical_compoundMicroscopyPhysical and Theoretical ChemistryWater splittingPhotocurrentNanoestructuresbusiness.industryChemistryEnergy conversion efficiencyDoping021001 nanoscience & nanotechnology0104 chemical sciencesNanostructuresElectroquímicaTitanium dioxidesymbolsWater splittingOptoelectronicsTitanium dioxideLi+ insertion0210 nano-technologybusinessRaman spectroscopy
researchProduct

Wireless battery chargers for portable applications: Design and test of a high-efficiency power receiver

2013

In this study, the authors present a 5 W wireless battery charger for handheld devices. Efficiency-related issues are addressed. A power receiver architecture which improves power conversion efficiency is proposed. Design hints are provided for further applications. Comparison with a conventional architecture is provided as well. Laboratory prototypes of both the proposed and the conventional architectures have been realised. Both prototypes are tested by using the same power transmitter to perform a valuable comparison. As shown by the experimental results, in the receiver side power conversion efficiency is increased up to 99% thanks to the proposed solution.

Battery (electricity)EngineeringBattery chargerHand held devicebusiness.industryPower transmittersTransmitterEnergy conversion efficiencyElectrical engineeringPortable applicationSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - ElettronicaPower (physics)Power conversion efficiencieBattery chargerHigh-efficiencyElectronic engineeringWirelessElectrical and Electronic EngineeringDesign and testbusinessMobile devicePower receiver
researchProduct

An over-the-distance wireless battery charger based on RF energy harvesting

2017

An RF powered receiver silicon IC (integrated circuit) for RF energy harvesting is presented as wireless battery charger. This includes an RF-to-DC energy converter specifically designed with a sensitivity of -18.8 dBm and an energy conversion efficiency of ∼45% at 900 MHz with a transmitting power of 0.5 W in free space. Experimental results concerned with remotely battery charging using a complete prototype working in realistic scenarios will be shown.

Battery (electricity)EngineeringInternet of Things02 engineering and technologyIntegrated circuitInternet of Things; Litium Ion Battery; Radio Frequency Harvesting; Wireless Battery Charger; Wireless Sensor Networks; Hardware and Architecture; Electrical and Electronic Engineering; Modeling and SimulationSettore ING-INF/01 - ElettronicaRadio Frequency Harvestinglaw.inventionBattery chargerlawWireless Battery ChargerHardware_INTEGRATEDCIRCUITS0202 electrical engineering electronic engineering information engineeringElectronic engineeringElectrical and Electronic Engineeringbusiness.industry020208 electrical & electronic engineeringEnergy conversion efficiencyElectrical engineering020206 networking & telecommunicationsHardware and ArchitectureModeling and SimulationLitium Ion BatteryRadio frequencyInternet of ThingWireless Sensor NetworksbusinessEnergy harvestingSensitivity (electronics)Wireless sensor networkWireless Sensor Network2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)
researchProduct

Wireless battery charging: E-bike application

2013

Nowadays, Inductive Power Transfer (IPT) represents a widely investigated issue with respect to modern battery charging methods, by providing a wireless solution. IPT is applied across a large variety of applications, from Watt to kWatt power levels. Although IPT features great benefits in terms of safety and comfort, the most significant drawback consists of a relatively poor power conversion efficiency. In this paper, a 100W wireless charging equipment for E-bikes which improves efficiency is proposed. Complete magnetic structure design, as well as transmitter and receiver efficient architectures, are deeply exposed. The efficiency of the designed solution is shown by simulation results.

Battery (electricity)Engineeringbusiness.industryTransmitterEnergy conversion efficiencywireless chargingElectrical engineeringSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciPower (physics)contactless battery chargingbattery chargingMaximum power transfer theoremWirelessinductive power transferbusinessDrawback2013 International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct